
Using Server-Side ActionScript in ColdFusion MX

Trademarks
Afterburner, AppletAce, Attain, Attain Enterprise Learning System, Attain Essentials, Attain Objects for Dreamweaver, Authorware,
Authorware Attain, Authorware Interactive Studio, Authorware Star, Authorware Synergy, Backstage, Backstage Designer, Backstage
Desktop Studio, Backstage Enterprise Studio, Backstage Internet Studio, ColdFusion, Design in Motion, Director, Director
Multimedia Studio, Doc Around the Clock, Dreamweaver, Dreamweaver Attain, Drumbeat, Drumbeat 2000, Extreme 3D, Fireworks,
Flash, Fontographer, FreeHand, FreeHand Graphics Studio, Generator, Generator Developer's Studio, Generator Dynamic Graphics
Server, JRun, Knowledge Objects, Knowledge Stream, Knowledge Track, Lingo, Live Effects, Macromedia, Macromedia M Logo &
Design, Macromedia Flash, Macromedia Xres, Macromind, Macromind Action, MAGIC, Mediamaker, Object Authoring, Power
Applets, Priority Access, Roundtrip HTML, Scriptlets, SoundEdit, ShockRave, Shockmachine, Shockwave, Shockwave Remote,
Shockwave Internet Studio, Showcase, Tools to Power Your Ideas, Universal Media, Virtuoso, Web Design 101, Whirlwind and Xtra
are trademarks of Macromedia, Inc. and may be registered in the United States or in other jurisdictions including internationally. Other
product names, logos, designs, titles, words or phrases mentioned within this publication may be trademarks, servicemarks, or
tradenames of Macromedia, Inc. or other entities and may be registered in certain jurisdictions including internationally.

This product includes code licensed from RSA Data Security.

This guide contains links to third-party web sites that are not under the control of Macromedia, and Macromedia is not responsible for
the content on any linked site. If you access a third-party web site mentioned in this guide, then you do so at your own risk. Macromedia
provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia endorses or accepts any
responsibility for the content on those third-party sites.

Apple Disclaimer
APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE ENCLOSED
COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY
NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER
RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO STATE.

Copyright © 1999–2002 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced, translated,
or converted to any electronic or machine-readable form in whole or in part without prior written approval of Macromedia, Inc.
Part Number ZCF60M600

Acknowledgments
Project Management: Stephen M. Gilson

Writing: Stephen B. Gilson

Editing: Linda Adler, Noreen Maher

First Edition: May 2002

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
ABOUT THIS BOOK . V

Developer resources . vi
About ColdFusion documentation. vii

Printed and online documentation set . vii
Viewing online documentation. viii

Getting answers . viii
Contacting Macromedia . viii

CHAPTER 1 Introduction .1

About server-side ActionScript. .2
Client-side ActionScript requirements .2
Server-side requirements. .3
Software requirements .3

More about server-side ActionScript .4
Location of server-side ActionScript files .4
Benefits .4

What to do next .5

CHAPTER 2 Connecting to the Flash

Remoting Service . 7

Connecting to the Flash Remoting service .8
Including the necessary ActionScript classes .8
Establishing a connection to the Flash Remoting service. .8

Calling server-side ActionScript functions .9
Creating an instance of the server-side ActionScript .9
Calling a server-side ActionScript function .9

Using the function results in ActionScript .10
Using results returned by the CF.query function .10
Using results returned by the CF.http function .11

Global and request scope objects .12

CHAPTER 3 Using the CF.query Function 13

Overview .14
Publishing dynamic data. .14

About ColdFusion data sources .15
Accessing ColdFusion data sources using ActionScript .15
iii

The CF.query ActionScript function .16
CF.query function syntax .16

The CF.query record set. .18
Building a simple application. .20

Write the server-side ActionScript .20
Creating the Flash movie interface .21
Submitting user data to the Flash Remoting service .21
Capturing Flash Remoting service results .22
Checking for a Flash Remoting service connection .22

CHAPTER 4 Using the CF.http Function. 23

Overview .24
Using CF.http to retrieve HTML content .24

Data returned by the CF.http function. .25
Referencing HTTP Post parameters CF.http .26

Using the CF.http Post method .27
Using the CF.http Get method .28

Example using the Get method .28

CHAPTER 5 ColdFusion ActionScript Functions. 29

CF.query .30
Methods available in the RecordSet ActionScript class .31

CF.htttp .32
CF.http parameters. .34
Properties available with the CF.http object .34
iv Contents

ABOUT THIS BOOK
Using Server-Side ActionScript in ColdFusion MX describes how to access ColdFusion
services using ActionScript, the scripting language associated with Macromedia Flash.

Contents

• Developer resources .. vi

• About ColdFusion documentation .. vii

• Getting answers .. viii

• Contacting Macromedia ... viii
v

Developer resources
Macromedia, Inc. is committed to setting the standard for customer support in developer
education, technical support, and professional services. The Macromedia website is
designed to give you quick access to the entire range of online resources. The following
table shows the locations of these resources:

Resource Description URL

Macromedia
website

General information about Macromedia
products and services

http://www.macromedia.com

Information on
ColdFusion

Detailed product information for
ColdFusion and related topics

http://www.macromedia.com/coldfusion

Macromedia
ColdFusion
Support Center

Professional support programs that
Macromedia offers

http://www.macromedia.com/support/
coldfusion

ColdFusion
Online Forums

Access to experienced ColdFusion
developers through participation in the
Online Forums, where you can post
messages and read replies on many
subjects relating to ColdFusion

http://webforums.macromedia.com/
coldfusion/

Installation
Support

Support for installation-related issues for
all Macromedia products

http://www.macromedia.com/support/email/
isupport

Training Information about classes, on-site training,
and online courses offered by Macromedia

http://www.macromedia.com/support/training

Developer
Resources

All the resources that you need to stay on
the cutting edge of ColdFusion
development, including online discussion
groups, Knowledge Base, technical
papers, and more

http://www.macromedia.com/desdev/
developer/

Reference Desk Development tips, articles,
documentation, and white papers

http://www.macromedia.com/v1/developer/
TechnologyReference/index.cfm

Macromedia
Alliance

Connection with the growing network of
solution providers, application developers,
resellers, and hosting services creating
solutions with ColdFusion

http://www.macromedia.com/partners/
vi About This Book

About ColdFusion documentation
ColdFusion documentation is designed to provide support for the complete spectrum of
participants. The print and online versions are organized to let you quickly locate the
information that you need. The ColdFusion online documentation is provided in
HTML and Adobe Acrobat formats.

Printed and online documentation set

The ColdFusion documentation set consists of the following titles:

Book Description

Installing ColdFusion
MX

Describes system installation and basic configuration for Windows
NT, Windows 2000, Solaris, Linux, and HP-UX.

Administering
ColdFusion MX

Describes how to connect your data sources to the ColdFusion
Server, configure security for your applications, and how to use
ClusterCATS to manage scalability, clustering, and load-balancing
for your site.

Developing ColdFusion
MX Applications with
CFML

Describes how to develop your dynamic web applications,
including retrieving and updating your data, and using structures
and forms.

Getting Started
Building ColdFusion
MX Applications

Contains an overview of ColdFusion features and application
development procedures. Includes a tutorial that guides you
through the process of developing a sample ColdFusion
application.

Using Server-Side
ActionScript in
ColdFusion MX

Describes how Macromedia Flash movies executing on a client
browser can call ActionScript code running on the ColdFusion
Server. Includes examples of server-side ActionScript and a
syntax guide for developing ActionScript pages on the server.

Migrating ColdFusion 5
Applications

Describes how to migrate a ColdFusion 5 application to
ColdFusion MX. This book describes the code compatibility
analyzer that evaluates your ColdFusion 5 code to determine any
incompatibilities within it.

CFML Reference Provides descriptions, syntax, usage, and code examples for all
ColdFusion tags, functions, and variables.

CFML Quick
Reference

A brief guide that shows the syntax of ColdFusion tags, functions,
and variables.

Working with Verity
Tools

Describes Verity search tools and utilities that you can use for
configuring the Verity K2 Server search engine, as well as creating,
managing, and troubleshooting Verity collections.
About ColdFusion documentation vii

Viewing online documentation

All ColdFusion documentation is available online in HTML and Adobe Acrobat Portable
Document Format (PDF) files. To view the HTML documentation, open the following
URL on the web server running ColdFusion: http://web_root/cfdocs/dochome.htm.

ColdFusion documentation in Acrobat format is available on the ColdFusion product
CD-ROM.

Getting answers
One of the best ways to solve particular programming problems is to tap into the vast
expertise of the ColdFusion developer communities on the ColdFusion Forums. Other
developers on the forum can help you figure out how to do just about anything with
ColdFusion. The search facility can also help you search messages from the previous 12
months, allowing you to learn how others have solved a problem that you might be
facing. The Forums is a great resource for learning ColdFusion, but it is also a great place
to see the ColdFusion developer community in action.

Contacting Macromedia

Corporate
headquarters

Macromedia, Inc.
600 Townsend Street
San Francisco, CA 94103

Tel: 415.252.2000
Fax: 415.626.0554

Web: http:// www.macromedia.com

Technical support Macromedia offers a range of telephone and web-based
support options. Go to http://www.macromedia.com/support/
coldfusionfor a complete description of technical support
services.

You can make postings to the ColdFusion Support Forum
(http://webforums.macromedia.com/coldfusion) at any time.

Sales Toll Free: 888.939.2545

Tel: 617.219.2100
Fax: 617.219.2101

E-mail: sales@macromedia.com

Web: http://www.macromedia.com/store
viii About This Book

CHAPTER 1

Introduction
Macromedia ColdFusion Server MX includes the Macromedia Flash Remoting service, a
module that lets Macromedia Flash developers create server-side ActionScript. These
ActionScripts can directly access ColdFusion query and HTTP features through two new
ActionScript functions: CF.query and CF.http. This chapter introduces the concepts
and basic requirements for creating server-side ActionScript for ColdFusion MX.

Contents

• About server-side ActionScript... 2

• More about server-side ActionScript .. 4

• What to do next .. 5
1

About server-side ActionScript
Macromedia ColdFusion MX includes a module called the Macromedia Flash Remoting
service that acts as a broker for interactions between Macromedia Flash MX and
ColdFusion MX. In addition to support for a range of object types, Flash Remoting also
lets you reference an ActionScript file that lives on a ColdFusion server.

The ability to create server-side ActionScript provides a familiar way for Flash developers
to access ColdFusion resources without having to learn CFML (ColdFusion Markup
Language). One benefit of this feature is that it lets you partition data-intensive
operations on the server, while limiting the amount of network transactions necessary to
get data from server to client.

In addition, this feature lets you logically separate the Flash presentation elements of your
applications from the business logic. Now you have the option of creating ActionScript
files that reside on the server to partition this processing away from your client
applications.

You have a very simple interface for building queries using server-side ActionScript, and
an equally simple interface for invoking these queries from your client-side ActionScript.

Client-side ActionScript requirements
On the client side, you only need a small piece of code that establishes a connection to
the Flash Remoting service and references the server-side ActionScript you want to use.

For example (note embedded comments):

// This #include is needed to connect to the Flash Remoting service
#include "NetServices.as"

// This line determines where Flash MX should look for the Flash Remoting service.
// Ordinarily, you enter the URL to your ColdFusion server.
// Port 8100 is the Flash Remoting service default.
NetServices.setDefaultGatewayUrl("http://mycfserver:8100");

// With the Flash Remoting service URL defined, now you can create a connection.
gatewayConnnection = NetServices.createGatewayConnection();

// Here’s where you reference the server-side ActionScript.
// In this case the stockquotes script file lives in the web root of the
// ColdFusion server identified previously. If it lived in a subdirectory
// of the web root called "mydir," you would reference it
// as "mydir.stockquotes".
stockService = gatewayConnnection.getService("stockquotes", this);

// This line invokes the getQuotes() method defined in the stockquotes
// server-side ActionScript.
stockService.getQuotes("macr");
2 Chapter 1 Introduction

// Once the record set is returned, you handle the results.
// This part is up to you.
function getQuotes_Result (result)
{

// Do something with results
}

Note: The two new server-side ActionScript functions, CF.query and CF.http, are not
supported in client-side ActionScript.

Server-side requirements
The option of creating ActionScript that executes on the server helps leverage your
knowledge of ActionScript, while providing direct access to ColdFusion query and
HTTP features. The CF.query and CF.http ActionScript functions let you perform
ColdFusion HTTP and query operations:.

Note: On the server side, ActionScript files use the extension .asr.

For example, the following server-side ActionScript builds on the client-side code shown
previously:

// Filename: stockquotes.asr
// Here is the getQuotes method invoked in the client-side ActionScript.
// It accepts a single stock quote symbol argument.
function getQuotes(symbol)
{

// Query some provider for the specified stock quote and return the
// results. In this case, the getQuotesFromProvider method is
// defined elsewhere in this ActionScript.
data = getQuotesFromProvider(symbol);
// Now return the data to the client.
// Note that this example does not include any of the error checking
// logic you would normally use prior to returning the data.
return data;

}

The getQuotes function conducts the stock quote request and returns the results of the
request to the client as a RecordSet object.

Software requirements
To use server-side ActionScripts, you must have the following software installed:
• Macromedia Flash MX
• Macromedia ColdFusion MX
• Flash Remoting Components

For more information about these products, go to www.macromedia.com.
About server-side ActionScript 3

More about server-side ActionScript
The ability to create server-side ActionScript provides a familiar way for Flash developers
to access ColdFusion resources without having to learn CFML.

Through the Flash Remoting service, Flash developers can leverage their knowledge of
ActionScript to access ColdFusion query and HTTP features. The only new things you
need to learn to make use of this feature are the use of two new ActionScript functions
that let you perform ColdFusion HTTP and query operations, and a few lines of setup
code on the client side.

This is a feature that lets you create data-intensive Flash-based applications. Creating
ActionScript files that reside on the server helps the business logic part of your
application from the user interface.

Location of server-side ActionScript files
You can place ActionScript files (*.asr) on the server anywhere below the web server’s
root directory. To specify subdirectories of the web root or a virtual directory, use package
dot notation. For example, in the following assignment code, the stockquotes.asr file is
located in the mydir/stock/ directory:

stockService = gatewayConnnection.getService("mydir.stock.stockquotes", this);

You can also point to virtual mappings, such as, cfsuite.asr.stock.stockquotes
where cfsuite is a virtual mapping and asr.stock is subdirectories of that mapping.

Benefits
Server-side ActionScript lets your ActionScript engineers use their knowledge of
ActionScript to write code for the backend of their Flash applications, which can mean
more meaningful levels of interactivity for your users. Your Flash applications can share a
library of server-side ActionScript functions, which means you can define functions that
are specifically tailored to your own business.

You could, for example, create a server-side ActionScript that defines a whole library of
SQL query methods. With these query methods defined on the server-side, your Flash
designers only have to invoke the specific query function they want to return data to their
Flash MX movies. They do not have to write any SQL, and they do not have to create a
new query every time they need to retrieve data from a ColdFusion data source. It is a
way of creating reusable queries that your entire Flash design team can use.

Coding the ColdFusion query and HTTP operations in ActionScript is very
straightforward. The CF.query and CF.http functions provide a well-defined interface
for building SQL queries and HTTP operations that is based on the legendary simplicity
of ColdFusion.
4 Chapter 1 Introduction

For example, the following is a typical server-side ActionScript function definition that
returns query data:

// This function shows a basic CF.query operation using only
// arguments for data source name and for SQL.
function basicQuery()
{

mydata = CF.query({datasource:"customers",
sql:"SELECT * FROM myTable"});
return mydata;

}

What to do next
If you are already familiar with ActionScript, you only need to know a few things to get
started:
• How to establish a connection with the Flash Remoting service using client-side

ActionScript. For details, see “Connecting to the Flash Remoting service” on page 8
• How to reference server-side ActionScripts and methods. For details, refer to “Calling

server-side ActionScript functions” on page 9
• How to code the server-side CF.query and CF.http functions. For details, see

Chapter 5, “ColdFusion ActionScript Functions” on page 29.

The following table shows where to find more information about using ActionScript
with ColdFusion MX:

For more information about See

ActionScript Macromedia Flash MX documentation, and
www.macromedia.com

Coding client-side and servier-side
ActionScript

Chapter 5, “ColdFusion ActionScript Functions”
on page 29

Writing query functions using
server-side ActionScript

Chapter 3, “Using the CF.query Function” on
page 13

Writing HTTp functions using
server-side ActionScript

Chapter 4, “Using the CF.http Function” on
page 23
What to do next 5

6 Chapter 1 Introduction

CHAPTER 2

Connecting to the Flash

Remoting Service
This chapter describes how to establish a connection to the Macromedia Flash Remoting
service, and includes other programming details about referencing server-side
ActionScript.

Contents

• Connecting to the Flash Remoting service ... 8

• Calling server-side ActionScript functions ... 9

• Using the function results in ActionScript ... 10

• Global and request scope objects.. 12
7

Connecting to the Flash Remoting service
Before you can use functions defined in your server-side ActionScript, you must first
perform several initial set up tasks.

First, you connect the Macromedia Flash movie to the server-side Flash Remoting
service. The following steps create a Flash Remoting service connection:

1 Include NetServices.as in your Flash movie.

2 Specify the default Flash Remoting service URL and create a connection to the
service.

See the following sections for more details:
• “Including the necessary ActionScript classes” on page 8
• “Establishing a connection to the Flash Remoting service” on page 8

After you perform this setup, you can use the functions defined in your server-side
ActionScript.

Including the necessary ActionScript classes
You must include a series of ActionScript classes in the first frame of the Flash movie that
will be using server-side ActionScript functions. The following command includes the
NetServices class:

#include "NetServices.as"

The following command includes the NetDebug class:

#include "NetDebug.as"

The NetServices include statement is required for server-side ActionScript. The
NetDebug include statement is optional.

Establishing a connection to the Flash Remoting service
The Flash Remoting service serves as a broker for calls to server-side ActionScripts.

To use server-side ActionScript:

1 Identify the Flash Remoting service URL as an argument in the
NetServices.setDefaultGatewayUrl function; for example:
NetServices.setDefaultGatewayURL("http://localhost:8100/flashservices")

You must specify a ColdFusion MX Server hostname. The default port number for
the Flash Remoting service is 8100.

2 Create the gateway connection using the NetServices.createGatewayConnection
function; for example:
gatewayConnection = NetServices.createGatewayConnection();
8 Chapter 2 Connecting to the Flash Remoting Service

Calling server-side ActionScript functions
After you connect to the Flash Remoting service, you call functions that are defined in
your server-side ActionScript, and return results.

To call a functions:

1 Create an instance of the server-side ActionScript using the getService function.
This function instantiates the server-side ActionScript as an object to be used on the
client side.

2 Call a function defined in your server-side ActionScript object.

3 Handle the function results in ActionScript.

For more information, see the following sections:
• “Creating an instance of the server-side ActionScript” on page 9
• “Calling a server-side ActionScript function” on page 9
• “Using the function results in ActionScript” on page 10

Creating an instance of the server-side ActionScript
To access the server-side ActionScript, first you must create an instance of it so it can be
invoked in your client-side ActionScript. To create an instance of your server-side
ActionScript, use the gatewayConnection.getService function; for example:

albumService = gatewayConnection.getService("recordsettest", this)

In the example, recordsettest represents the name of the server-side ActionScript file,
without the file extension .asr.

Calling a server-side ActionScript function
To use the functions in a server-side ActionScript, you use dot notation to specify the
object name name followed by the function name; for example:

albumService.getAlbum("The Color And The Shape", "1999");

In the example, albumService is the instance of the server-side ActionScript and
getAlbum is a function that passes two arguments, "The Color and The Shape" and
"1999".

Note: Arguments must occur in the order defined in the function declaration.
Calling server-side ActionScript functions 9

Using the function results in ActionScript
To use the results returned by server-side ActionScript, you must create a corresponding
results function, which is a function defined specifically to handle the results returned by
a function that calls a server-side ActionScript. The results function uses a special naming
convention that ties it to the function that calls the server-side ActionScript. For example,
if you defined a client-side ActionScript function called basicCustomerQuery, you also
must create a results function called basicCustomerQuery_result.

The results returned by server-side ActionScript functions differ somewhat depending on
whether you are using CF.http or CF.query.

The CF.query function returns a record set, which you manipulate using methods
available in the RecordSet ActionScript class object.

The CF.http function returns simple text strings through properties that you reference
in your server-side ActionScript.

For more information, see the following sections:
• “Using results returned by the CF.query function” on page 10
• “Using results returned by the CF.http function” on page 11

Using results returned by the CF.query function
You access the data returned in a CF.query record set using functions in the RecordSet
ActionScript object. Functions in the RecordSet object let you determine how many
records are in the record set, what the column names are, and so on. RecordSet functions
also let you pull the query data out of the record set. To do so, you reference a specific
row number in the record set and use the getItemAt RecordSet function, as in the
following example:

// This function populates a Flash text box with data in the first row
// of the record set under the "email" column name.
function selectData_result (result)
{

stringOutput.text = result.getItemAt(0)["email"];
_root.employeesView.setDataProvider(result);

}

In the example, the column name is referenced in the getItemAt function between
square brackets []. The rows returned by the CF.query function are counted starting
from one, so the first row is row 0 (zero), the second row is row 1, and so on.

For more information about coding the server-side CF.query function, see Chapter 3,
“Using the CF.query Function” on page 13.
10 Chapter 2 Connecting to the Flash Remoting Service

Using results returned by the CF.http function
The CF.http server-side ActionScript function returns data as simple text. You write
server-side functions that reference the properties available in the object returned by the
CF.http function. These properties store the file content of the retrieved file, HTTP
status codes, the MIME type of the returned file, and so on. On the client side, you
create return functions to handle data returned by the CF.http function. You write these
functions to handle simple text data.

For more information, see Chapter 4, “Using the CF.http Function” on page 23.
Using the function results in ActionScript 11

Global and request scope objects
Global and request scope objects are implicitly available in all server-side ActionScript.
The following table describes these scope objects:

For more information about these scope objects, see the documentation on the
javax.servlet class, found at http://java.sun.com.

Scope name Type Description

config Global Initialization information for the server-side ActionScript
adapter.

Class: javax.servlet.ServletConfig

application Global The context for the current web application. The context
defines methods that provide, for example, the MIME type of
a file that can be used to write to a log file. There is one context
per web application.

Class: javax.servlet.ServletContext

request Request An object containing client request information. The object
provides data including parameter name and values,
attributes, and an input stream.

Class: HttpServletRequest (subtype of
javax.servlet.ServletRequest)

response Request An object to assist in sending a response to the client. It
provides HTTP-specific functionality in sending a response.
Do not use the OutputStream or PrintWriter to send data back
to the client.

Class: HttpServletResponse (subtype of
javax.servlet.ServletResponse)
12 Chapter 2 Connecting to the Flash Remoting Service

CHAPTER 3

Using the CF.query Function
This chapter describes how to retrieve data from a database using the CF.query
ActionScript function.

Contents

• Overview ... 14

• About ColdFusion data sources ... 15

• The CF.query ActionScript function.. 16

• The CF.query record set... 18

• Building a simple application... 20
13

Overview
The CF.query function lets you populate Macromedia Flash MX movie elements with
data retrieved from a ColdFusion data source.

To pull data into your Flash MX movie from a ColdFusion data source:

1 Create a server-side ActionScript file that performs queries against a ColdFusion data
source.

2 Write ActionScript code in your Flash MX movie that references your ActionScript
file (.asr) on the ColdFusion server.

You create a server-side ActionScript to execute the query and returns the data in a record
set to the client—your Flash MX movie. You can use methods in the RecordSet
ActionScript object on the client to manipulate data in the record set and present data in
your Flash MX movie.

Note: Client-side ActionScript files use the .as extension. Server-side ActionScript files
use the .asr extension, for "ActionScript remote."

Publishing dynamic data
The server-side ActionScript feature in ColdFusion Server MX lets you write server-side
ActionScript files to perform queries against ColdFusion data sources. You must first
understand the following:
• How to code database queries in the server-side ActionScript file using the CF.query

ActionScript function. See “CF.query,” in Chapter 5.
• How to reference the server-side ActionScript file in your Flash MX movie. See

Chapter 2, “Connecting to the Flash Remoting Service” on page 7.

Using the CF.query function, you can do the following tasks:
• Create user login interfaces that validate users against a ColdFusion data source.
• Populate form elements and data grids with data from a ColdFusion data source.
• Create banners that draw data (such as URLs or image file paths) out of a database.

The CF.query function can retrieve data from any supported ColdFusion data source
(see “About ColdFusion data sources” on page 15).
14 Chapter 3 Using the CF.query Function

About ColdFusion data sources
Your ColdFusion administrator can help you identify and configure data sources. To
create ActionScript files that successfully perform queries on ColdFusion MX data
sources, you msut know how the data source is identified by ColdFusion, as well as any
other parameters that affect your ability to connect to that database, such as whether a
username and password are required to connect. Your ColdFusion administrator can
provide this information.

For ColdFusion developers, the term data source can refer to a number of different types
of structured data accessible locally or across a network. You can query websites, LDAP
servers, POP mail servers, and documents in a variety of formats.

However, for server-side ActionScript, a data source ordinarily means the entry point to a
ColdFusion database.

For more detailed information about ColdFusion data sources, see Administering
ColdFusion Server in the ColdFusion MX Server documentation.

Accessing ColdFusion data sources using ActionScript
The server-side ActionScript feature in ColdFusion MX provides the ability to return
record set data to a Flash MX client from a ColdFusion data source. The ColdFusion
data source name and the SQL statement you execute on the data source are both
arguments you specify in the CF.query function in the server-side ActionScript.

Typically, your server-side ActionScript handles the interaction with the ColdFusion data
source, and returns a record set to the Flash MX client through the Flash Remoting
service.

For information about building queries using the CF.query function in server-side
ActionScript, see “The CF.query ActionScript function” on page 16.
About ColdFusion data sources 15

The CF.query ActionScript function
You use the CF.query in your server-side ActionScript to retrieve data from a
ColdFusion data source. This function lets you perform queries against any ColdFusion
data source.

Note: CF.query maps closely to the cfquery CFML tag, though it currently supports a
subset of the cfquery attributes.

Use the CF.query function to do the following:
• Identify the data source you want to query.
• Pass SQL statements to the data source.
• Pass other optional parameters to the database.

For reference information about the CF.query function, see Chapter 5, “ColdFusion
ActionScript Functions” on page 29.

CF.query function syntax
You can write the CF.query ActionScript function using either named arguments or
positional arguments. The named argument style is more readable than the positional
argument style, even though it is more laborious to code CF.query declarations in this
way. Although the positional argument style supports a subset of CF.query arguments, it
allows a more compact coding style that is more appropriate for simple expressions of the
CF.query function.

CF.query named argument syntax

The CF.query function accepts the following named arguments:

// CF.query named argument syntax
CF.query

({
datasource:"data source name",
sql:"SQL stmts",
username:"username",
password:"password",
maxrows:number,
timeout:milliseconds

})

Note: The named argument style requires curly braces {} to surround the function
arguments.
16 Chapter 3 Using the CF.query Function

CF.query positional argument syntax

The positional argument approach supports a subset of CF.query arguments, but it lets
you code in a leaner more efficient style. The schema for the positional argument style is
as follows:

// CF.query positional argument syntax
CF.query(datasource, sql);
CF.query(datasource, sql, maxrows);
CF.query(datasource, sql, username, password);
CF.query(datasource, sql, username, password, maxrows);

Note: When using positional arguments, do not use curly braces {}.

For more information about the CF.query function, see “CF.query,” in Chapter 5.
The CF.query ActionScript function 17

The CF.query record set
The CF.query function returns a RecordSet object, which is an instance of the RecordSet
class of objects. The RecordSet class provides a wide range of functions for handling
record set data.

You use methods in the RecordSet ActionScript class in your client-side ActionScript to
scrub, manipulate, mine, filter, sort, or otherwise change data returned in the CF.query
record set.

Currently, the following methods are available in the RecordSet class:

Method Description

addItem Appends a record to the end of the specified RecordSet

addItemAt Inserts a record at the specified index

addView Requests notification of changes in a RecordSet object’s state

filter Creates a new RecordSet object that contains selected records
from the original RecordSet object

getColumnNames Returns the names of all the columns of the RecordSet

getItemAt Retrieves a record from a RecordSet object

getItemID Gets the unique ID corrresponding to a record

getLength Returns the total number of records in a RecordSet object

getNumberAvailable Returns the number of records that have been downloaded from
the server

isFullyPopulated Determines whether a RecordSet object can be edited or
manipulated

isLocal Determines whether a RecordSet object is local or
server-associated

removeAll Removes all records from the RecordSet object

removeItemAt Removes a specified record

replaceItemAt Replaces the entire contents of a record

setDeliveryMode Changes the delivery mode of a server-associated record set

setField Replaces one field of a record with a new value

sort Sorts all records by a specified compare function

sortItemsBy Sorts all the records by a selected field
18 Chapter 3 Using the CF.query Function

These functions are available for every RecordSet object returned by the CF.query
function to the Flash MX client. You invoke these functions as follows:

objectName.functionName();

For example, in the result function that you create to handle record set data returned by
the CF.query function, you can reference the database column names returned in the
record set using the getColumnNames RecordSet function:

function selectData_result (result)
{

//result holds the query data; employeesView is a Flash list box
stringOutput.text = result.getColumnNames();
_root.employeesView.setDataProvider(result);

}

The CF.query record set 19

Building a simple application
The following procedures describes how to build a simple server-side ActionScript
application. The example application, a corporate personnel directory, uses the
NetServices object to connect to the personneldirectory server-side ActionScript. The
personneldirectory server-side ActionScript retrieves data from a ColdFusion data
source and returns the results to the Flash movie as a RecordSet object.

Note: The server-side ActionScript that you create provides the backend services in an
application.

This example requires the following:
• A server-side ActionScript file named personneldirectory.asr that includes functions

that interact with a ColdFusion data source.
• A client-side Flash MX movie in which the NetServices object is created.

To create the application:

1 Write the server-side ActionScript that performs the database query and returns data
back to the client through the Flash Remoting service.

2 Create the Flash movie interface.

3 Define a search function that sends user data to the Flash service.

4 Define a result function that captures the results returned from the Flash service.

5 Ensure that the Flash movie has established a connection to the Flash Remoting
service.

For more information, see the following sections:
• “Creating the Flash movie interface” on page 21
• “Submitting user data to the Flash Remoting service” on page 21
• “Capturing Flash Remoting service results” on page 22
• “Checking for a Flash Remoting service connection” on page 22

Write the server-side ActionScript
In this example, you create a search function that performs a simple search operation
against a ColdFusion data source. This function accepts two arguments, firstName and
lastName, and returns any records found that match these parameters.

Create a server-side ActionScript file that contains the following code, and save the file as
personneldirectory.asr:

//search takes firstName lastName arguments
function search(firstName, lastName)
{

searchdata = CF.query({datasource: "bigDSN",
sql:"SELECT * from personnel WHERE fname = firstName AND lname = lastName"{);

if (searchdata)
return searchdata;

else
return null;

}

20 Chapter 3 Using the CF.query Function

Creating the Flash movie interface
The Flash movie interface consists of one frame with a variety of text boxes and a submit
button.

To create the Flash movie interface:

1 In the Flash MX authoring environment, create a new Flash source file, and save it as
pDirectory.fla.

2 Create two input text boxes. Name one text box variable lastName and the other
firstName.

3 Create a dynamic text box, and name its variable status.

4 Insert a list box component, and name it dataView.

5 Insert a push button component.

6 Save your work.

The following figure shows what the pDirectory Flash movie looks like:

Submitting user data to the Flash Remoting service
To send data to a server-side ActionScript, you must create a function that passes the data
from the Flash movie to the server-side ActionScript. The search function, applied at
the frame level, collects the user-entered data from the firstName and lastName text
boxes and passes the data as function arguments to the directoryService object, which is
created when the Flash movie connects to the Flash Remoting service. For more
information, see “Checking for a Flash Remoting service connection” on page 22.

The following is a Flash MX ActionScript example:

#include "NetServices.as"
function search()
{

// The search() method is defined in the server-side AS file
directoryService.search(firstName.text, lastName.text);
dataView.setDataProvider(null);
status.text = "waiting...";

}

Building a simple application 21

In this example, the search function passes the contents of firstName and lastName text
boxes to the server-side ActionScript.

The dataView.setDataProvider(null) function clears the dataView list box
component. The status.text action displays a message in the status text box while the
record set is being retrieved from the server-side ActionScript.

Capturing Flash Remoting service results
When you create a function that calls a server-side ActionScript function, you must also
create a function to handle the data returned by the server-side ActionScript. You access
data returned by a server-side ActionScript by defining a function with the same name as
the function making the initial call, only you append _Result to the name.

For example, if you create a function called basicQuery to return query data, you also
need to define a results function to handle returned data; the results function would be
declared as basicQuery_result.

In the following example, the results function search_Result supplies the record set to
the dataView.setDataProvider function:

function search_Result(resultset)
{

dataView.setDataProvider(resultset);
status.text = (0+resultset.getLength())+" names found.";

}

In this example, the _Result suffix tells the Flash Remoting service to return the results
of the search function to this function. The dataView.setDataProvider(resultset)
function assigns the results returned by the Flash Remoting service to the dataView list
box. The status.text action displays the number of records returned by the Flash
Remoting service.

Checking for a Flash Remoting service connection
To ensure that the Flash movie is connected to the Flash Remoting service, you use an if
statement; for example:

if (inited == null)
{

inited = true;
NetServices.setDefaultGatewayUrl("http://localhost:8100/flashservices/

gateway");
gateway_conn = NetServices.createGatewayConnection();
directoryService = gateway_conn.getService(personneldirectory, this);
status.text = "Type into the text boxes, then click 'Search'";

}

In this example, inited is evaluated for a value. If it is null (not connected), the movie
connects to the Flash Remoting service using the NetServices object. For more
information about connecting to the Flash Remoting service, see “Connecting to the
Flash Remoting service” on page 8.
22 Chapter 3 Using the CF.query Function

CHAPTER 4

Using the CF.http Function
This chapter describes how to use the CF.http ActionScript tag to conduct HTTP
(HyperText Transfer Protocol) operations.

Contents

• Overview ... 24

• Data returned by the CF.http function .. 25

• Using the CF.http Post method.. 27

• Using the CF.http Get method .. 28
23

Overview
The CF.http ActionScript function lets you to retrieve information from a remote
HTTP server. HTTP Get and Post methods are supported.
• Using the Get method, you send information to the remote server directly in the

URL. This method is often used for a one-way transaction in which CF.http
retrieves an object such as the contents of a web page.

• The Post method can pass variables to a form or CGI program, and can also create
HTTP cookies.

Using CF.http to retrieve HTML content

The most basic way to use the CF.http function is to use it with the Get method
argument to retrieve a page from a specified URL. For the CF.http function, the Get
method is the default.

For example, the following server-side code retrieves file content from the specified URL:

function basicGet(url)
{

// Invoke with just the url argument. This is an HTTP Get.
result = CF.http(url);
return result.get("Filecontent");

}

On the client side, your code could look like the following:

#include "NetServices.as"
NetServices.setDefaultGatewayUrl("http://mycfserver:8100");
gatewayConnnection = NetServices.createGatewayConnection();
myHttp = gatewayConnnection.getService("httpFuncs", this);

// This is the server-side function invocation
url = "http://anyserver.com";
myHttp.basicGet(url);

// Create the results function
function basicGet_result()
{

url = "http://anyserver.com
ssasFile.basicGet(url)

}

24 Chapter 4 Using the CF.http Function

Data returned by the CF.http function
The CF.http function returns an object that contains properties, also known as
attributes, that you reference to access the contents of the file returned, header
information, HTTP status codes, and so on. The following table shows the available
properties:

Property Description

Text A Boolean value indicating whether the specfied URL location contains
text data.

Charset The charset used by the document specified in the URL.

HTTP servers normally provide this information, or the charset is
specified in the charset parameter of the Content-Type header field of
the HTTP protocol. For example, the following HTTP header announces
that the character encoding is EUC-JP:
Content-Type: text/html; charset=EUC-JP

Header Raw response header. For example, macromedia.com returns the
following header :
HTTP/1.1 200 OK
Date: Mon, 04 Mar 2002 17:27:44 GMT
Server: Apache/1.3.22 (Unix) mod_perl/1.26
Set-Cookie: MM_cookie=207.22.48.162.4731015262864476;
path=/; expires=Wed, 03-Mar-04 17:27:44 GMT;
domain=.macromedia.com
Connection: close
Content-Type: text/html

Filecontent File contents, for text and MIME files.

Mimetype MIME type. Examples of content types include "text/html", "image/
png", "image/gif", "video/mpeg", "text/css", and "audio/basic".

Responseheader Response header. If there is one instance of a header key, this value can
be accessed as a simple type. If there is more than one instance, values
are put in an array in the responseHeader structure.

Statuscode HTTP error code and associated error string. Common HTTP status
codes returned in the response header include the following:
400: Bad Request
401: Unauthorized
403: Forbidden
404: Not Found
405: Method Not Allowed
Data returned by the CF.http function 25

Referencing HTTP Post parameters CF.http

In order to pass HTTP Post parameters in the CF.http function, you must construct an
array of objects and assign this array to a variable named params. The following
arguments can only be passed as an array of objects in the params argument of the
CF.http function.

In the following example, the CF.http function passes HTTP Post parameters in an
array of objects.

function postWithParamsAndUser()
{

// Setup the array of post parameters. These are just like cfhttpparam tags.
params = new Array();
params[1] = {name:"arg2", type:"URL", value:"value2"};

url = "http://localhost:8100/";

// Invoke with the method, url, params, username, and password
result = CF.http("post", url, params, "karl", "salsa");
return result.get("Filecontent");

}

Parameter Description

name The variable name for data that is passed

type Transaction type:

• URL
• FormField
• Cookie
• CGI
• File

value Value of URL, FormField, Cookie, File, or CGI variables that are passed
26 Chapter 4 Using the CF.http Function

Using the CF.http Post method
Use the Post method to send cookie, form field, CGI, URL, and file variables to a
specified ColdFusion page or CGI program for processing. For POST operations, you
must use the params argument for each variable that you post. The Post method passes
data to a specified ColdFusion page or an executable that interprets the variables being
sent and returns data.

For example, when you build an HTML form using the Post method, you specify the
name of the page to which form data is passed. You use the Post method in CF.http in a
similar way. However, with CF.http, the page that receives the Post does not display
anything.

function postWithParams()
{

// Setup the array of post parameters. These are just like cfhttpparam tags.
// This example passes formfield data to a specified URL.
params = new Array();
params[1] = {name:"Formfield1", type:"FormField", value:"George"};
params[2] = [name:"Formfield2", type:"FormField", value:"Brown"};

url = "http://localhost:8100/";

// Invoke CF.http with the method, url, and params
result = CF.http("post", url, params);
return result.get("Filecontent");

}

Using the CF.http Post method 27

Using the CF.http Get method
You use the Get method to retrieve files, including text and binary files, from a specified
server. You reference properties of the object returned by the CF.http function to access
things like file content, header information, MIME type, and so on.

For more information about CF.http function properties, see Chapter 5, “ColdFusion
ActionScript Functions” on page 29.

Example using the Get method

The following example of using the CF.http function shows a common approach to
retrieving data from the web.

// Returns content of URL defined in url variable
// This example uses positional argument style
function get()
{

url - "http://www.macromedia.com/software/coldfusion/";

//Invoke with just the url argument. Get is the default.
result = CF.http(url);
return result.get("Filecontent");

}

28 Chapter 4 Using the CF.http Function

CHAPTER 5

ColdFusion ActionScript Functions
This chapter explains the syntax and usage of the two currently supported server-side
ActionScript funtions, CF.query and CF.http.

Contents

• CF.query.. 30

• CF.htttp... 32
29

CF.query

Description Performs queries against ColdFusion data sources.

Return value Returns a RecordSet object. For information about methods that you can use to
manipulate the record set returned by the CF.query function, see “Methods available in
the RecordSet ActionScript class” on page 31.

Syntax CF.query
({

datasource:"data source name",
sql:"SQL stmts",
username:"username",
password:"password",
maxrows:number,
timeout:milliseconds

})

Arguments

Usage You can code the CF.query function using named arguments or using positional
arguments. You can invoke all supported arguments using the named argument style, as
follows:

CF.query({datasource:"datasource", sql:"sql stmt",
username:"username", password:"password", maxrows:"maxrows",
timeout:"timeout"});

Note: The named argument style uses curly braces {} to surround the function arguments.

Positional arguments let you use a shorthand coding style. However, not all arguments
are supported for the positional argument style. Use the following schemas to code the
CF.query function using positional arguments:

CF.query(datasource, sql);
CF.query(datasource, sql, maxrows);
CF.query(datasource, sql, username, password);
CF.query(datasource, sql, username, password, maxrows);

Note: When using positional arguments, do not use curly braces {}.

Arguments Req/Opt Description

datasource Required Name of the data source from which query retrieves data.

sql Required SQL statement.

username Optional Overrides the username specified in the data source setup.

password Optional Overrides the password specified in the data source setup.

maxrows Optional Maximum number of rows to return in the record set.

timeout Optional Maximum number of seconds for the query to execute before
returning an error indicating that query has timed out. Can only
be used in named arguments.
30 Chapter 5 ColdFusion ActionScript Functions

Example // Define a function to do a basic query
// Note use of positional arguments
function basicQuery()
{

result = CF.query("myquery", "cust_data", "SELECT * from tblParks");
return result;

}

// Example function declaration using named arguments
function basicQuery()
{

result = CF.query({datasource:"cust_data", sql:"SELECT * from tblParks"});
return result;

}

// Example of query function using maxrows argument
function basicQueryWithMaxRows()
{

result = CF.query("cust_data", "SELECT * from tblParks", 25);
return result;

}

// Example of CF.query with username and password
function basicQueryWithUser()
{

result = CF.query("cust_data", "SELECT * from tblParks",
"wsburroughs", "migraine1");

return result;
}

Methods available in the RecordSet ActionScript class
The record set returned by the CF.query function can be manipulated using methods in
the RecordSet ActionScript class. The following are some of the methods available in the
RecordSet class:
• RecordSet.getColumnnames
• RecordSet.getLength
• RecordSet.getItemAt
• RecordSet.getItemID
• RecordSet.sortItemsBy
• RecordSet.getNumberAvailable
• RecordSet.filter
• RecordSet.sort

For more detailed information about the RecordSet ActionScript class, see Using Flash
Remoting.
CF.query 31

CF.htttp

Description Executes HTTP POST and GET operations on files. POST operations upload MIME
file types to a server, or post cookie, formfield, URL, file, or CGI variables directly to a
server.

Return value Returns an object containing properties that you reference to access data. For available
properties returned by the CF.http function, see “Properties available with the CF.http
object” on page 34.

Syntax CF.http
({

method:"get or post",
url:"URL",
username:"username",
password:"password",
resolveurl:"yes or no",
params:arrayvar,
path:"path",
file:"filename"

})

Arguments
Arguments Req/Opt Description

method Required Two arguments are supported:

• get: downloads a text or binary file or creates a query from
the contents of a text file.

• post: sends information to the server page or CGI program
for processing. Requires the params argument.

url Required The absolute URL of the host name or IP address of server on
which the file resides. The URL must include the protocol (http
or https) and host name.

username Optional When required by a server, a username.

password Optional When required by a server, a password.
32 Chapter 5 ColdFusion ActionScript Functions

Usage You can code the CF.http function using named arguments or positional arguments.
You can invoke all supported arguments using the named argument style, as follows:

CF.http({method:"method", url:"URL", username:"username", password:"password",
resolveurl:"yes or no", params:arrayvar,
path:"path", file:"filename"});

Note: The named argument style uses curly braces {} to surround the function arguments.

Positional arguments let you use a shorthand coding style. However, not all arguments
are supported for the positional argument style. Use the following schemas to code the
CF.http function using positional arguments:

CF.http(url);
CF.http(method, url);
CF.http(method, url, username, password);

resolveurl Optional For Get and Post methods.

• Yes or No. Default is No.
For GET and POST operations, if Yes, page reference that is
returned into the Filecontent property has its internal URLs
fully resolved, including port number, so that links remain
intact. The following HTML tags, which can contain links, are
resolved:

- img src
- a href
- form action
- applet code
- script src
- embed src
- embed pluginspace
- body background
- frame src
- bgsound src
- object data
- object classid
- object codebase
- object usemap

params Optional HTTP parameters passed as an array of objects. Supports the
following parameter types:

• name
• type
• value
CF.http params are passed as an array of objects. The
params argument is required for POST operations.

For detailed information about each params argument, see
“CF.http parameters” on page 34 .

path Optional The path to the directory in which to store files. When using
the path argument, the file argument is required.

file Optional Name of the file that is accessed. For GET operations, defaults
to name specified in the url argument. Enter path information
in the path attribute.

Arguments Req/Opt Description
CF.htttp 33

CF.http(method, url, params, username, password);

Note: When using positional arguments, do not use curly braces {}.

CF.http parameters
The following parameters can only be passed as an array of objects in the params
argument in the CF.http function:

Properties available with the CF.http object
The CF.http function returns data as a set of object properties:

Parameter Description

name The variable name for data that is passed

type The transaction type:

• URL
• FormField
• Cookie
• CGI
• File

value Value of URL, FormField, Cookie, File, or CGI variables that are passed

Property Description

Text A Boolean value that indicates whether the specfied URL location
contains text data.

Charset The charset used by the document specified in the URL.

HTTP servers normally provide this information, or the charset is
specified in the charset parameter of the Content-Type header field of
the HTTP protocol. For example, the following HTTP header
announces that the character encoding is EUC-JP:
Content-Type: text/html; charset=EUC-JP

Header Raw response header. For example, macromedia.com returns the
following header:
HTTP/1.1 200 OK
Date: Mon, 04 Mar 2002 17:27:44 GMT
Server: Apache/1.3.22 (Unix) mod_perl/1.26
Set-Cookie: MM_cookie=207.22.48.162.4731015262864476;
path=/; expires=Wed, 03-Mar-04 17:27:44 GMT;
domain=.macromedia.com
Connection: close
Content-Type: text/html

Filecontent File contents, for text and MIME files.

Mimetype MIME type. Examples of content types include text/html, image/png,
image/gif,"video/mpeg, text/css, and audio/basic.
34 Chapter 5 ColdFusion ActionScript Functions

You access these attributes using the get function:

function basicGet()
{
 url = "http://localhost:8100/";

 // Invoke with just the url. This is an http get.
 result = CF.http(url);
 return result.get("Filecontent");
}

Example The following examples show a number of the ways to use the CF.http function:

function postWithNamedArgs()
{

// Set up the array of post parameters.
params = new Array();
params[1] = {name:"arg1", type:"FormField", value:"value1"};
params[2] = {name:"arg2", type:"URL", value:"value2"};
params[3] = {name:"arg3", type:"CGI", value:"value3"};

url = "http://localhost:8100/";

path = application.getContext("/").getRealPath("/");
file = "foo.txt";

result = CF.http({method:"post", url:url, username:"karl", password:"salsa",
resolveurl:true, params:params, path:path, file:file});

if (result)
return result.get("Statuscode");

return null;
}

// Example of a basic HTTP get operation
// Shows that HTTP Get is the default
function basicGet()
{

url = "http://localhost:8100/";

// Invoke with just the URL. This is an HTTP Get.
result = CF.http(url);
return result.get("Filecontent");

Responseheader Response header. If there is one instance of a header key, value can be
accessed as simple type. If there is more than one instance, values are
put in an array in responseHeader structure.

Statuscode HTTP error code and associated error string. Common HTTP status
codes returned in the response header include:
400: Bad Request
401: Unauthorized
403: Forbidden
404: Not Found
405: Method Not Allowed

Property Description
CF.htttp 35

}

// Example showing simple array created to pass params arguments
function postWithParams()
{

// Set up the array of post parameters. These are just like cfhttpparam tags.
params = new Array();
params[1] = {name:"arg2", type:"URL", value:"value2"};

url = "http://localhost:8100/";

// Invoke with the method, url, and params
result = CF.http("post", url, params);
return result.get("Filecontent");

}

// Example with username and params arguments
function postWithParamsAndUser()
{

// Set up the array of post parameters. These are just like cfhttpparam tags.
params = new Array();
params[1] = {name:"arg2", type:"URL", value:"value2"};

url = "http://localhost:8100/";

// Invoke with the method, url, params, username, and password
result = CF.http("post", url, params, "karl", "salsa");
return result.get("Filecontent");

}

36 Chapter 5 ColdFusion ActionScript Functions

	Using Server-Side ActionScript in ColdFusion MX
	Contents
	About This Book
	Developer resources
	About ColdFusion documentation
	Printed and online documentation set
	Viewing online documentation

	Getting answers
	Contacting Macromedia

	Introduction
	About server-side ActionScript
	Client-side ActionScript requirements
	Server-side requirements
	Software requirements

	More about server-side ActionScript
	Location of server-side ActionScript files
	Benefits

	What to do next

	Connecting to the Flash Remoting Service
	Connecting to the Flash Remoting service
	Including the necessary ActionScript classes
	Establishing a connection to the Flash Remoting service

	Calling server-side ActionScript functions
	Creating an instance of the server-side ActionScript
	Calling a server-side ActionScript function

	Using the function results in ActionScript
	Using results returned by the CF.query function
	Using results returned by the CF.http function

	Global and request scope objects

	Using the CF.query Function
	Overview
	Publishing dynamic data

	About ColdFusion data sources
	Accessing ColdFusion data sources using ActionScript

	The CF.query ActionScript function
	CF.query function syntax

	The CF.query record set
	Building a simple application
	Write the server-side ActionScript
	Creating the Flash movie interface
	Submitting user data to the Flash Remoting service
	Capturing Flash Remoting service results
	Checking for a Flash Remoting service connection

	Using the CF.http Function
	Overview
	Using CF.http to retrieve HTML content

	Data returned by the CF.http function
	Referencing HTTP Post parameters CF.http

	Using the CF.http Post method
	Using the CF.http Get method
	Example using the Get method

	ColdFusion ActionScript Functions
	Methods available in the RecordSet ActionScript class
	CF.http parameters
	Properties available with the CF.http object

